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ABSTRACT

A method is presented for predicting the damping
controlled response of a structure at a known
natural frequency to random wave forces. The results
are applicable to a wide variety of fixed or floating
structures. Potentisl applications include the
response prediction of the fundamental flexural mode
of a steel jacket structure, or the prediction of the
heave, pitch, and roll responses of a tension leg
platform. The principal advantage of the proposed
method over those in current use is that the explieit
calculation of wave forces is not required in the
analysis., This is accomplished by application of the
widely overlooked principle of reciprocity; that the
linear wave force spectrum for the particular
vibration mode is proportional to the radiation
{wave making) damping of that mode. Contrary to
popular belief, the conclusions show that the
response to wave excitation at a natural frequency
does not grow without bound as the damping is
decreased, but, in faet, reaches an upper bound,
which is independent of damping. Several example
calculations, including the prediction of the heave
response of a tension leg platform are presented.

The directional distribution of the wave spectrum is
included in the analysis. The examples are
structured so as to be easily extended to other
applications.

INTRODUCTION

This paper introduces a simple procedure for
estimating the dynamic response of a structure at
each of its natural frequencies to the random
excitation of ocean waves. The principal advantage
of the proposed method over those presently used is
that the explicit calculation of wave forces has been
eliminated from the analysis. This is made possible
by & direct application of the reciproeity relations
for ocean waves, which were established originally by
Haskind! and described by Newman® in a form that is
eagy to implement. Briefly stated, for many
structures, it is possible to derive a simple
expression for the wave force spectrum in terms of
the radiation damping and the prescribed wave

References and illustrations at end of paper.

amplitude spectrum.

The dynamic amplification of structural
responses to random wave forces at a natural
frequency is lnown to be strongly dependent on
damping. This analysis shows that, for structures
excited by random ocean waves, the response contrib-
uted by the damping controlled resonant band that
includes the natural frequency is not govermed by the
total damping for that vibraticn mode, but, in fact,
by the ratio of the radiation to the total damping.

As a consequence, knowing only the structural
natural frequency of interest, the prescribed wave
amplitude spectrum, and the ratic of the radiation to
total damping for that vibration mode, it is rela-
tively simple to estimate the mean square response of
the structure in the freguency band that includes the
natural frequency. If the ratio of the radiation to
total damping is not known, an upper bound estimate
of the mean square response atill may be obtained.

Linear wave theory is assumed, and therefore,
excitation due to drag forces is not considered.
However, for many structures, drag excitation is
negligible except for very large wave events. In the
design process, extreme events are modeled determin-
istically by means of a prescribed design wave, and
not stochastically as is done here. In many
circumstances linear wave forces will dominate, and
the results shown here will be applicable. Although
drag exciting forces are not included, damping
resulting from hydrodynamic drag is included.
diffraction effects are extremely difficult to
caleulate, This analysis includes diffraction
effects, but never requires explicit evaluation of
them,

Wave

There are numercus applications of present
interest. For example, the fatigue analysis of a
tension leg platform must include an estimate of the
amplified responses at the natural freguencies of the
gtructure in heave and pitch. This method guickly
provides that response estimate. An example calcula-
tion for the heave response of a TLP is included. Two
additional examples are provided, which exploit

simplifications that frequently may be useful. The
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first is the case where the wave exciiing force is
independent of incidence angle, as would be truye
when considering the heave respotise of a structure
with a vertical axis of symmetry. The second
exampls illustrates the simplifications obtained
when the wave spectrum is distributed broadly in
incidence angls.

The method is quite general and may be applied
to & variety of fixed, floating, and submerged
structures that meet the criteria established in
this paper. This approach highlights simply and
quickly those aspects of a structural design most
likely to need improvement in withstanding random
wave loads; and furthermore, provides a basic tool
for structural optimization.

The techniques applled in this paper are new
to the field of ocean engineering. However they are
not without precedent and have found extensive
appligation in the fields of acoustics and vibra-
tion.

THE LINFAR OSCILLATOR MODEL

In general, a structure in the ocean may have
a large number of natural fresquencies, although at
only a few is the dynamic response to wave
excitation likely to be ilmportant. It is con-
verdent for the purpose of this peper t0 assume
that by using the techniques of modal analysis each
of the responding natural modes may be modeled as
an independent single degree of freedom rescnator.
The general requirements for this are that the
vibration of the structure behave in a linear
fashion and that the damping be small. The motiva-
tion for using modal analysis is that it is far
simpler mathematically to analyze a few independent
single degree of freedom models, than one large
coupled, multidegree of freedom system. Ref. 4
presents a thorough discussion of modal analysis,
and Ref. 5 demonstrates its application to off-
shore structures.

Henceforth, thls paper will be preaented in
terms of the response of a simple asingle degree of
freedom resonator excited by ocean wave forces, The
resitlts should be interpreted in the larger context
of modal analysis; that the total reasponse of a
structure can be obtained by a superposition of the
individual responses of the modes of interest.
Although it always will not be stated explicitly,
the coefficients and variables of the single degree
of freedom system must be expressed in terms of the
appropriate modal quantities for the specific
natural mcde being modeled.

The equaticon of motion for the single degree of
freedom resonator excited by ocean waves will
contain terms corresponding to hydrodynamic forces
as well as purely mechanical ones, such as struc-
tural stiffness. The hydrodynamic exciting forces
will be, in general, a function of the relative
acceleration, welocity, and displacement between
the water particles and the generalized coordinates
that represent the motion of the structure. For
structures that behave in a linear fashion, these
quantities may be expressed separately. Thus, the
loads on the rescnator resulting from its motion
in an otherwigse c¢alm ocean may be added to the
forces exerted on the resonator when held rigidly in
place and loaded by the passage of ocean waves.

This may be expressed mathematically as followa,
where the coefficients are often functions of
frequency.

{m + ma)q + (Ri + Rrad + Rv)q +

(X, + Xy 0q = £() + g(n) + n(m),

occ-acoo--------oo-ou,-(l)

m = modal mass of structurs

my, » modal added mass of water

Ry » linear internal structural modal
damping, not relatad to the presence
of the fluid

Rr ad * radiation or wave making damping of the
mode (& linear frequency dependent
term that may be expressed by poten—
tial flow theory).

R, = the viscous fluid modal demping (due to
the assumption of light damping, it is
assumed that an equivalent linesriza~-
tion will be adequate)

q = the appropriate normal coordinate
obtained by modal analysis for this
particular mode

K, = structural modal stiffness

K‘hy = hydrostatic modal stiffness that arises
- from changes in displacement of a
bedy on the free surface

where

On the right side appear the excitation quan-
tities that are functions of the water particle
acceleratlion, velocity, and displacement %, 7%, and
Ne

g{ 1) = the drag force excitation term that is
assumed small compared with the other
two terms, and is dropped

£(#) = the hydrodynamic modal forces normally

and calculated from potential flow theory

h(n) by integrating the pregsure over the
surface of the body. In fact, these
are the inertial and hydrostatic
forces exerted by passing waves.)

The exciting forces appearing on the right side are
the modal forces that would be exerted on the body
if it were held rigidly in place. A principal con~—
clusion of this paper 1s that these forces need not
be evaluated explicitly in order to obtain an
estimate of the mean square response of a particular
vibration mode.

Eg. 1 is of the form of a simple single degree
of freedom oscillator.

M Ei+n.ri+xcq-1?(:),.......(2)

where M = virtual mass
total damping

total stiffness
= modal exciting force

Y

~
L}

The undamped natural frequency and the damping ratio
are given by the following familiar expressions.

w, = /K/Mv..............(B)
R
T

; - m—cco---r--o----(h)
o v
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My By, and K generally may not be assumed indepen-
dent of frequency. However, in the following
analysis, the frequency range of interest is con-
fined to a narrow band about the natural frequency.
Within this band we shall assume that My and K do
not vary. However, the frequency dependence of Ry
may not be disregarded so easily. The radiation
damping portion of is strongly frequency depen-
dent. OSince the behavior of an oseillator at
resonance is damping controlled, then the nature
of the damping must be well understood bvefore
simplifying assumptions are made.

RECIFROCITY RELATIONS

In general, the evaluation of hydrodynamic
forces on a body in an incident wave gystem iz very
difficult. It is necessary to know not only the
hydrodynamic¢ pressure in the incident wave system,
but alse the effects on this pressure field due to
the presence of the body. The incident pressure
field is relatively easy to evaluate, but the
diffraction effects usually are sxtremely difficutt
to gbtain. Hagkind and Newmanl'< have pregented
expressions for the exciting forces and moments on
a fixed body that do not require knowledge of the
diffraction effects, but depend instead on the
velocity potential for forced oscillations of the
bedy in calm water. In other words, there is a
direct relationship between the radiation damping
on a body that is forced to oscillate in calm water
and the force exerted on that body when it is held
fized in incident waves.

Newman evaluated the expressions for an
arbitrary three~dimensional body either on the
surface or submerged, in terms of the six general-
ized coordinates and forces relating to the six
rigid body degrees of freedom.

In general, one would desire the relation
between the modal radiation damping coefficient
and the modal exciting force. The medal exciting
force and, therefore, the modal radiation damping
may be obtained by a linear transformation from the
six generalized forces in accordance with the method
of modal analysis, It is essential to understand
this relationship, but in the following analysis,
one is never actually required to carry out the
calculation.

The Haskind/Newman relation is stated here in

terms of the modal quantities necessary in the
remainder of this discussion.

w3 r“ 1P CwsB) |2
amos® |, tat.8)|?
e e ()

R (w) = dB

rad

= radiation damping coefficient for
the natural mode of interest

the modal exciting force exerted on
the fixed body by a system of
plane deep-water waves of fre-
quency « and amplitude A(w,8),
incident on the body at an angle
B+ [Flw,B) and A{w,B) both have an
elwt time-dependent term that will
not be explicitly written out |

density of water

where Rrad(m)

F(WIB)

©
1]

- all angles of incidence.

g = acceleration of gravity

This equation states that the modal radiation damping
coefficient is proportional to the integral of the
square of the modal exciting force, integrated over

Generally, for an arbitrary bedy, the wave
forces will depend on the shape of the body and the
angle of incidence of the waves. For this analysis
it is useful to have a shape function defined as

F(w,B)

F(U’B) e TR TN TN TR BN TR RN R A .(6)
Aw,B)

I'is a measure of the modal force per umit wave

height as a function of wave frequency and

incidence angle. A mean square value of T computed

over a1l incidence angles is given simply by

) 1 27 rw,8)]?
aritg e — | —

2m o a8 |?

Therefore, from Eq. 5, Bngq(w) may be expressed in
terms of the mean square value of T,
w? 2
(w) = 3 <[T[%>
2pg g

dB .+ . « o (T)

R,.a N )]

Eq. 6 may be rewritten as
F(mas) = A(M.B)F(m,s). P TR (9)

This is the modal weve force due to the incidence

of regular waves of a single frequency and incidence
angle. Again the time dependent el«t term is
implied and not written out explicitly. Because
only linear processes are being considered, super-
position of waves of many frequencies and incidence
angles results in a modal wave force spectrum of the
form

sp@,8) = s . [Tw.8)% ., ., (0

When possible, the modal force spectrum may be
further simplified by integrating this expression
over all incidence angles.

2w 2
Spw) = [O sn(w,a){r(w,e)l dB . , .{11)

As will be demonstrated by example, there are many
applications in which the results of this integrai
may be expressed in terms of the mean square of the
shape function and the simple wave amplitude
spectrum as shouwn here.

2
Sp(w) = €, s (w) <ir| 28 p e e ows a(12)

where C, is a frequency independent constant that is
obtaine& for each application and depends on the
shape of the structure and the directional character-
istics of the wave spectrum. Hew one obtaing Cq is
shown in three examples at the end of the paper.

From Bq. 8 the mean square value of I' may be
expressed in terms of the radiation damping., Sub-
stitution into Eg. 12 results in

2033

Splw) = €y S (w) —;§~ Rogt@y. oo .(13)
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This is a result of considerable utility. The wave
force spectrum has been expressed in terms of the
simple wave amplitude spectrum and the radiation
damping. This result leads to extremely useful
espressions for the response of the resonator.

THE RESPONSE OF A SINGLE DEGRER
OF FREEDOM RESONATOR TO RANDOM EXCITATION

Through the use of modal analysis, the total
structural vibration has been sxpressed in terms
of a set of independent single degres of freedom
oscillators, one for each vibration mode. If the
displacement of one of these oscillators is denoted
by q, then the displacement response spectrum to the
modal wave force spectrum Sp(w) is given by

S,(w) = Sy(w) ]Hq(m)lz e e e e e . (1)

where Hy(w) 1s the complex frequency response of the
resonator and may be found in any vibrations text..

2
i/x
1 - A o
a -2t angh

-.---clo---oo-c.‘au--o.(ls)

The modal wave force spectrum and, consequently,
the modal radiation damping, Rpgq(w), vary with -
frequency. The total damping ratio {, through its
dependence on Rng4(w) is also a frequency-dependent
term. The remaig'ger of this section is dewoted to
presenting a simple but accurate expression for the
response of the resonator that arises from the damp-
ing controlled resonant peak that is centered on the
natural frequency.

From random vibration theory, the mean square
of a process is given by the integral of the spectrum
over all frequency. Therefore, the mean square dis-
placement is given by

2 2
<q®> = jo Sq(w)dw = IO Sp(w) [ (w)|“dus

O 1)

where, for engineering purposes, only positive
frequencies are allowed.

If the force spectrum is a constant, Sq, over
all frequency, the mean square displacement is
gsimply

<q2> - so J’0 IHq(w)[zdwa * % 2 e s = s (17)

For light constant damping (i.e., { € 0.15) the
value of this integral is approximated closely by
the following expression that may be found in the
text by Lyon.>
2 HSO vSo
<q > = 3 3 - 3 y
44M w

ZRTMNO
where Rp = By + By + R,..q» the total damping of the
resonator. The largesi contribution to this intesral
comes from the damping controlled peak in | Hglw)!=,

B -3

which is confined to a narrow band of frequencies
about the natural frequency w.. In fact, 6.% can be
attributed to the small band in frequency, wy + fwos
known as the half power band width; Aw = 2{,. The
mean square response to Sy in the half power band .
may be expressed as

w, (145)
8
<«q?s =5 [H(w) | 2da = 2
Aw -] R My 2
T "o
w, {1~}
- [ ] L - - L] . . L] L - - - L ] - L . - - L] [ ] [ ] (19)
2
<q“>
. Aw 2
bl s " o= 642' » * L - L] L) » * L] m
<q2> v ( )

If the limits of integration in Eq. 19 are
doubled to include two half power band widihs,
wy £ 2fw,, then B0% of the total dynamic response

will be included.
4TS
2 -~ o
<q> . —— coo.olcc--(zlJ
2Aa M 2
RT -]

An accurate estimate of the mean square
response of a lightly damped resonator excited by
ocean waves may be obtalned within a half power band
width, This msy be done by assuming that the values
of the wave force spectrum and the radiation damping
at the natural frequency of the resonator, «,,
represent acceptable averages over the band grn. Thigf
sssumption provides a simple but reasonably accurate
estimate of the damping controlled dynamic response
in the half power band, Aas )
s_(w
£ 0) .---------(22)'

2
<q > -
Aw 2
R'.l' (mo)Hmo
The error introduced by this spproximation is
related directly to the width of the half powsr
band Aw = 2{w,, and therefors to the total damping
{. For very‘?ow damping (¢ € 0.05), the error is
negligible. This was confirmed by a numerical
integration of Eq. 19 over the half powsr band for
a varlety of cases in which the wave force spectrum
and radiation damping were allowed to vary with
frequency in a realistic fashion. The worst case
results indicate that the error introduced by using
the approximation of Eq. 22 was less than 2% for
¢ 20,05, This error will incresse with an incrsease
in the total damping {. However, for any specific
application the frequency dependence of the wave
force spectrum SF(w) and the total damping ratio ¢
may be estimated in the neighborhood of the natural
frequency wy. By evaluating the ratio between the
expressions provided in Fgs. 22 and 19, the actual
error may be accounted for. 3Such a procedure would
allow the extension of the simple results of Eg. 19
to include total damping values as high as 10 or 15%.

In the case of very low total damping
(¢ £0.05), the assumption of constant force spectrum
and total damping may be incressed to include a
greater portion of the damping controlled peak. For
example, Eq. 21 may be used to provide an estimate
of the damping controlled response in a region that
is two half power bandwidtha wide. For ¢ < 0.05,
the worst case error increases to only &%, and
approximately 80% of the total dynamic response is
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contained in the prediction given by

AT 5 (w )
<q2> ~ F'Uo

28 S <)

2
R.r(wo)Mu.lo

To simplify the presentation in the remainder
of the paper, response estimates will be made for
the region defined by a single half power bandwidth
using Eg. 22. It ig implied that other estimates
using broader bands (such as Eq. 23) also may be
uged, though larger errors will result.

ELIMINATION OF EXPLICTT
CALCUIATION OF WAVE FORCES

In an earlier section the reciprocity relation
was used to derive an expression for the modal wave
force spectrum in terms of the radiation damping.

208>

SF(m) - Cl Sn(w) ? R (w). . .. (13)

rad

This expression may be substituted into Eq. 22,
thereby obtaining an expression for the mean square
response in the half power band, which does not
require explicit calculatior of the wave force
spectrum.

3
2 2C1 P8 Sn(mo) Rrad(mo)

<q> -
Aw 3
Hwo RT(wo)

e oo (28)

The most important feature revealed by this
expression is that the damping controlled response
of a resonator excited by linear ocean wave forces
is dependent on the ratic of the radiation to total
damping evaluated at the natural frequency, .. It
is far simpler to estimate the ratio Rpaglug)Rplu,)
than it is to evaluate Rng4{«) itself. Furthermore,
since this ratic can never exceed 1.0, then without
any knowledge of the ratio, an upper bound estimate
still may be achieved. This upper bound is
independent of damping. The widely held belief that
the response of a structure at a natural frequency
increases without bound as the damping is decreased
simply is not true when the excitation is prowvided
by linear wave forces. This is a consequence of the
reciprocity relation stated in Eq. 5. It is impos-
sible to reduce the radiation demping without also
reducing the exciting forces, thus resulting in a
bounded response.

The ag-yet-unevaluated constant Cy is dependent
on the shape of the structure and the directionality
of the wave spectrum. In the following three
examples, C; will be evaluated. These examples were
selected because they may be extended directly to a
large variety of ocean structures.

ample Response Calculations

Example 1: Heave Regponse of an Oceanographic
Mooring

The results of this example apply to any struc—
ture for which it may be argued that the modal force
is independent of wave incidence angle.

Consider the simple oceanographic mooring shown
in Fig. 1. It consists of a submerged spherical
float and a tripod elastic tether. The undamped
natural frequency in heave is given by Eg. 3, where K|

is a linesar stiffness coefficient for small vertical
motions.

w. =~ YE/M. .

© v

P &)

The modal force for vibration in the vertical direc-
tion is simply the generalized force in the vertical
direction on the float. Furthermore, because the
float has a vertical axis of symmetry, the heave
exciting force is independent of the angle of inci-
dence of the waves, and therefore I'(w,8) is a func-
tion of » only.

From Eg. 11, the modal exciting force is
2n
Splw) = I Sn(w.SJIF(m,B)IZdB. o o (11)
0
Since T is independent of B, it may be moved cutside
of the integral, We may note further that in this

case the magnitude squared of ' and its mean square
with respect to 8 must be equal.

P12 = <frBoge v (29)

Therefore,
2n

2
Splw) = <|T| > Jo Sp(w,B)dB ., . .(26)

-<|rI2>B sn(w) ----...-.(27)

because the integration of the directional wave
spectrum over all incidence angles results in the
gimple wave amplitude spectrum.

This result is now in the form of Eq. 12 when
C1 = 1.0. It follows that we may express the heave
exciting force spectrum in the form of Eq. 13,
with ¢, = L.0.
208’

Splw) = Sn(w) —;3" Rrad(m) r oo ov o o(28)

where Bpag{w) is now the modal radiation damping of
the spherical float for heave motions.

The heave response spectrum is the same as
presented in Eg. 14,

Sq@) = sp@) [ @ P L)

and the mean square response in the small half power
band about the natural frequency is from Eq. 24,

3

2pg R (w_ )
q7>, = sn(mo) x —Eii*il-. . «(29)
Hw RT(wo)

This estimate of the heave response of the buoy is
appropriate within the half power band Aw = ngo,
provided the system is reasonably linear, the tdtal
damping is small, and the assumptions and limitationg
of modal analysis ave satisfied.

Tn this prediction of the heave response of a
mooring, no mention was made of the dependence on thel
depth of submergence. This is implicit in the ratio
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Rpgd(wg)/Rp(wg). Newman shows that_the radiation

coeffgciant decreases as e~<%l, yhers k ia
the wave rmmber of radisted waves. In the limit
that the depth of submergence h — =, then Rngq(wg) —
0 and ‘the ratio also goes to zero. Thua the
response of the buoy is predicted correctly to be
zero at depths below the reglon of significant wave
excitation.

The specific results shown in Eqs. 28 and 29
for this example generally are applicable to a
broad range of structures; that is, whenever the
modal exciting force is independent of wave
incidence angle. As will be shown in the next
section, these results alsc apply whenever the waves
in the frequency band of interest can be assumed to
have random incidence angle.

Example 2:

When the incident wave spectrum is distributed
equally over all incidence angles, the Tesults shown
in Eqs. 28 and 29 apply. This is relstively easy
to demonstrate, even for structures with complicated
or unknown shape functions. For waves of completely
random incidence angle, the directional wave
spectrum and the simple amplitude spectrum are
related in the following way,

1

Sy (w,8) = -;; Spw. L ... ... (30)

Random Incidence Waves

This may be substituted into Eq. 11, the general
expression for the force spectrum.

2n
sp(m) - Io sn(uls) |P(W-B)|zd5

27

S @ — { |78

- w - w, . . 1
n 21 J o ) (312)
where the angular independent wave spectrum has been
moved outside of the integral. The integral now is
reduced to that which defines the mean square of T’
with respect to 8. Therefore,

2
Splu) = S, (@) <|r] Pga v e e e e {27)

which, when expressed in terms of Rppg{w), yields
the same results as the case in which the exciting
force was independent of g.
3

2og
Splw) = Sn(w) —5

5 Rrad®@ - @)

Of course, this immediately leads to the same
expression for the response in the half power band
width as found in Eq. 29 of the previous example.
In fact, for the result shown in Eq. 29 to be valid,
it is necessary only that the waves whose frequency
lHes within the half power band be randomly incident.
Waves cutside of the band need not be so randomiy
oriented. As a practical matter the high frequency
components of a seaway tend to te more confused in
direction than the low frequency waves. Therefore,
the validity of the assumption of randomly incident
Waves may be more appropriate than ordinarily
supposed, depending on the natural frequency of the
structure, geographic location, and prevailing

weather conditions.

The result just shown applies to an arbitrary
shape function. Any structural symmetries will
reduce the range of angles over which the waves must
be randomly incident. For example, it can be shown
that for a structure with two orthogonal vertical
planes of symmetry, such as a steel jacket platform
with a rectangular layout of its primary legs, the
wavas in the half power band need be only randomly
incident over a semicircle, i.e., 180°_for Eqs. 27,
28, and 29 to hold. The result might be used to
predict the mean square response of the two lowest
flexural modes,

For many structures these simplifying assump-
tions may be justified, and the simple result for
the mean square response within the half power
band width as shown in Ej. 29 may be applied.

However, at times such assumptions mey not be
acceptable, and it may be necessary to measure or
estimate MNw,B8) and also to incorporate a direc—
tional wave spectrum S,’(w, £)s Such a procedurs is
followed in the final example.

1le 3: The Re e of a Tension

Example 3: ‘The Response of a Tension
Leg Platform to Random Wave Excitation

An important concern in contemporary design
of all platforms is fatigue. The prediction of the
fatigue life is a process that must include the
anticipated wave statistics and response statistics
of the structure. Numerous authors have reported on
difficulties encountered in estimating the response
at the rescnant frequencies of the structure and
have noted that the response prediction for the
frequency band about resonance is critically depen-
dent on the value of damping that is selected. The
method presented here is dirscted specifically at
predicting the response in the resonant band and,
beyond that, puts the role of damping in the proper
perspective. EKnowledge of the total damping is
not sufficient. It is important to know the way
in which the damping is distributed between radiation
and all other sources.

Consider the hypothetical square tension leg
platform shown in Fig. 2. At the preliminary
design stage it would be ugseful to have an estimate
of the response of the structure to a prescribed sea
state at its natural frequencies in heave, pitch,
and roll. In the following example only the heave
response will be estimated. The response in the roll
and pitch modes would be carried out in a very
similar fashion. The primary purpose of this examplq
is to illustrate the method one might use to take
the geometry of the structure and the directionality
of the wave gpectrum into consideration.

The influence of both the directionality of the
wave gpectrum and the geometry of the structure has
been compressed into the unknown constant Cy, which
appears in Eq. 24, the prediction of the mesn square
displacement response in the half power band width.

3
2 2¢, rg
<q >Am - 5

Hmo RT(wo)

Sn(uo) Rrad(mo)

- (k)

A useful expression for C, may be obtained by
eliminating the commen force spectrum term, Sp(«),
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from Egs. 11 and 12 and solving for Gi. The result
is shown in Eg. 32, where the integral form of the
mesn square of '(w, B} has been used to replace the
< > notation,

27 2
I S_(w,B) |T(w,B)|“d8
0 n

C =

1 . ee (32)

5 {(w) 2m
" [ ir.s) |t

The directional wave spectrum is prescribed and in
this exemple is assumed to be a cosine squared
distribution about some reference angle §.

(B-Bo)s v . (33)
which is valid for - #/2 <8 -8, < »/2 and zeroc else-

2
Sn(w.B) il sn(m) cos

where., It is noted that
Bo + w/2
Sn(w) - Sn(w.B) dB. . . . (34)
Bo - /2

By substituting into Eq. 32 the expression for
Sq(w.ﬁ) and noting that the common term sn(w)
cancels out, the following is obtained.

B+ w/2
°f 2 cos® (88 |T(w,8)(%a8
Bo - /2
C - ¢
1 2w
1 2
-—f |T(w,B)|° 48
2w 0

-.c--ocn.n--o-o---u-c(35)

As generally will be the case, the problem has
reduced to the need for an estimate of the angular
dependence of i['(w,B)|. This task is simplified by
the observation that an expression valid for all
frequencies, w, is not necessary. An estimate
valid at only the natural frequency of interest, wg,
is suffiecient. 1In Fig. 3, plane progressive deep-—
water waves of unit amplitude and frequency, wa,,
are shown approaching the TLP at an angle 8. %he
magnitude of the heave force exerted on a single
axially symmetric leg is independent of incidence
angle and may be expressed as | {w)|.

The magnitude of the force exerted on the
entire structure will depend primarily on the rela-
tive phases of the four individual leg forces and
upen any diffraction effects. The diffraction
effects are assumed small compared with the phase
effects and are ignored. The magnitude of the total
heave force accounting for phase effects is given by

|T(w,,B)1 =

)| { Bl
4 iro(mo)i cos (%? cosﬁj cos k%? sinBJa
... (38
where d is the leg spacing and A is the wave length

that corresponds to a frequency w=,. Substitution
of this expression into Eq. 35 yields for Ci the

L L e e R . T

result

B +n/2
°f cos2(B
Bo -r/2
-Bo)cosz(%g cosﬁ)cosz(%g sinB) dB
Cl - .
m

{
J cosz(%g cosB)cosz(%g sinB)dB
0

B Ya.

This expression was integratsd numerically for
all combingtions of heave natural period and leg
spac ranging from 1 to 4s and 100 to 300 ft.

To 0.1% accuracy, Cq = 1.0 for all directions of
incidence, Bor of the cosine squared wave spectrum.
The cosine sguared distribution was sufficiently
broad to smooth cut the effects of varying wave
force phases on the four legs. This unexpected but
simple conclusion allows the use of the simple resulf
of the previous two examples. The mean square
heave response in the damping controlled half power
band is given by

3

2pg” S_(w.) R (w )
<q >Aw - 5n ) rad o’
Mmo RT(mo)
-..-.-.-....--...o---.(29)

For the large legs of a TLP, the radistion
damping likely will be the greatest contributor to
the total damping. Consequently, a conservative
but reascnable upper bound estimate for the ratio
of the radiation to total damping is 1.0, and Eg.
29 reduces to

3
> - 2pg Sn(wo);
Aw Mmos s e e e w e« (38)
An example calculation where
M = 20,000 Mg: the virtual mass of

the TLP in heave,

w, = 2.1 radians/sec:

heave period of three seconds,

-2 2
Sn(wo) = 1.89 x10 Y

lated for a 15 m/s Pierson-Moskowitz spectrum,

corresponds to a

- sec!: calcu-

yields a root mean square heave amplitude of

2
<q>Am'5'1mm' .....'-.-.(39)
The heave response is insignificant. However,
to arrive at that conclusion by any other means

would have been much more difficult.
CONCLUSIONS

A method has been presented for predicting the
damping controlled dynamic response of an offshore
structure. The method is applicable to a wide
variety of structures and depends only on the
assumptions of linearity of wave forces and struc-
tural response and, f{urthermore, requires that the
total structural damping be small.
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There are three principal conclusions to be
drawn. Flrst, the linear wave force spectrum on a
structure may be expressed in terms of the radiation
damping of the structure. This is a consequencs of
the principle of reciproecity for ocsan wave forcas
that has been known for many years, but has not been

applied to common ocean engineering problems.

Second, through the use of the sbove result, a
method for estimating the damping controlled
response of a structural natural mode has been
Presented that does not require explicit caleulation
of the modal wave force spectrum.

Last, the role of damping in the estimation of
dynamic response is placed in the proper perspectivs.|
It is not the total damping of a vibration mode that
governs the response to wave excitation but, in
fact, the ratio of the radiation to total damping.
Since this ratio has an upper bound of 1.0, then the
response has an upper bound independent of the exact

value of the damping.

The conclusions of this paper are a consequence
of the often overlooked principle of reciprocity
between exciting forces and radiation damping.

NOMENCLATURE

A{w,B) = plane progressive waves of amplituds 4,
frequency «, and incidence angle §
;1 = constant dependent on 8,(vw,8) and '(w, 8)
d = leg spacing on TLP
F(t; = modal wave force on fixed structure
F(w, 8) = modal wave force on fixed structure due to
waves A (w,f)

. g(”i = linear wave forces on fixed body
gzg = drag exciting force on fixed body
g = acceleration of gravity
H, (@) = frequency response of linear sscond—order
q single degree of freedom system
Key Ehy = structural and hydrostatic contributions
to the modal stiffness
K = total modal stiffness
m = modal structural mass
My = modal added mass
M, = total modal virtual mass
q = modal displacement coordinate
mean square dlsplacement in the band Aw
% = linear nonhydrodynsmic damping
Rrad' = linear radiation damping

Rpag (@)

¥

<o

B, = linearized viscous hydrodynamic damping
R.f = total linearized demping
Sp(wy 8) = directional modal wave force spectrum
S, = constant force spectrum
S,,(m) = wave amplitude spectrum
3q(m,ﬁ; » directional wave spectrum
Sq(aa = modal displacement spectrum
8 = wave Inzidence angle
INw,B) = modal wave force F{w,8) per unit wave
amplitude
<|T] 2’,3 = mean square of I'(w,8) with respect to 8
{ = total modal damping ratio
7.1,4 = water partial dlsplacement, velocity, and
acceleration .
wave length with frequency wg
density of water
wave frequency
@, = natural frequency of the mode
Aw = half power band width
| | = denotes magnitude of
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F16. 3 - REGULAR WAVES INCIDENT ON THE TLP (Top view).






